112 research outputs found

    Criss-cross methods: A fresh view on pivot algorithms

    Get PDF
    Criss-cross methods are pivot algorithms that solve linear programming problems in one phase starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky and Wang independently. Unlike the simplex method that follows a monotonic edge path on the feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective function) nor feasibility preserving. The main purpose of this paper is to present mathematical ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from any basis might be indeed short for criss-cross type algorithms. The origins and the history of criss-cross methods are also touched upo

    Colourful Simplicial Depth

    Full text link
    Inspired by Barany's colourful Caratheodory theorem, we introduce a colourful generalization of Liu's simplicial depth. We prove a parity property and conjecture that the minimum colourful simplicial depth of any core point in any d-dimensional configuration is d^2+1 and that the maximum is d^(d+1)+1. We exhibit configurations attaining each of these depths and apply our results to the problem of bounding monochrome (non-colourful) simplicial depth.Comment: 18 pages, 5 figues. Minor polishin

    A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors

    Full text link
    Various noise models have been developed in quantum computing study to describe the propagation and effect of the noise which is caused by imperfect implementation of hardware. Identifying parameters such as gate and readout error rates are critical to these models. We use a Bayesian inference approach to identity posterior distributions of these parameters, such that they can be characterized more elaborately. By characterizing the device errors in this way, we can further improve the accuracy of quantum error mitigation. Experiments conducted on IBM's quantum computing devices suggest that our approach provides better error mitigation performance than existing techniques used by the vendor. Also, our approach outperforms the standard Bayesian inference method in such experiments.Comment: Updated the introduction and the description of methodology in the new versio

    Criss-cross methods: a fresh view on pivot algorithms

    Get PDF
    Criss-cross methods are pivot algorithms that solve linear programming problems in one phase starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky and Wang independently. Unlike the simplex method that follows a monotonic edge path on the feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective function) nor feasibility preserving. The main purpose of this paper is to present mathematical ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from any basis might be indeed short for criss-cross type algorithms. The origins and the history of criss-cross methods are also touched upon

    On relaxations of the max kk-cut problem formulations

    Full text link
    A tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max kk-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max kk-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max kk-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub

    Quantum Interior Point Methods for Semidefinite Optimization

    Get PDF
    We present two quantum interior point methods for semidefinite optimization problems, building on recent advances in quantum linear system algorithms. The first scheme, more similar to a classical solution algorithm, computes an inexact search direction and is not guaranteed to explore only feasible points; the second scheme uses a nullspace representation of the Newton linear system to ensure feasibility even with inexact search directions. The second is a novel scheme that might seem impractical in the classical world, but it is well-suited for a hybrid quantum-classical setting. We show that both schemes converge to an optimal solution of the semidefinite optimization problem under standard assumptions. By comparing the theoretical performance of classical and quantum interior point methods with respect to various input parameters, we show that our second scheme obtains a speedup over classical algorithms in terms of the dimension of the problem nn, but has worse dependence on other numerical parameters
    • …
    corecore